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Abstract L

The Global Positioning System provides a real-time means of updating an aircraft inertial

navigation system to reduce position and velocity errors due, in part, to an inexact

knowledge of the gravity field in which the aircraft is flying. Gravity disturbance

modeling via such techniques as point mass or finite element modeling provides a

real-time means of reducing this gravity field error. This paper demonstrates that should

the navigator be denied the GPS signal, the modeling of gravity disturbances can

adequately minimize the navigation error. In the presence of the GPS signal, the gravity

disturbance component information, combined with GPS data via Kalman filtering,

consi~titutes a further refinement in the system.
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THE GLOBAL POSITIONING SYSTEM VERSUS GRAVITY

DISTURBANCE MODELING IN AN INERTIAL NAVIGATION SYSTEM

I INTRODUCTION

Recent developments in inertial instrumentation have substantially improved the

performance of inertial navigation systems in both aircraft and shipboard applications.

The level of confidence in these inertial systems has risen to the point that the geodetic

community has begun to utilize inertial instrumentation to perform surveys of geodetic

quality (1). In the geodetic survey mode, data from inertial systems are processed

post-mission to determine the components of the gravity disturbance vector. However,

in the navigation mode, operating in real-time, these gravity disturbance components

must somehow be furnished to the inertial navigation system, in which they have now

become a significant error source.

In state-of-the-art inertial navigation systems, electrostatically supported gyros

have reduced drift rates to as low as .000001 0/hr and electrostatic accelerometers have

reduced accelerometer bias to as low as 1 -.ig (-I x 10- m/sclsec) (2). The

accelerometer is a specific force instrument, i.e., it measures the total acceleration due

to the vehicle, errors and biases, gravity. Hence, the unknown gravity disturbance

components act as time dependent accelerometer biases, which, by Einstein's Principle of

Equivalence, cannot be separated by instrumentation operating at the acceleration level.

Although the gravity gradiometer shows great promise for real-time determination

of the gravity disturbance components (3), the implementation of such a system remains

just beyond our grasp. Thus, we are led to the necessity to provide either a means of

modeling the gravity disturbance in real-time or a means of updating the inertial naviga-

tion system with position and velocity Information in real-time, so that the errors induced

by the unmodeled gravity disturbances can be minimized.
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Position information derived from electronic systems such as VORTAC, DME,

LORAN and velocity information derived from Doppler radar is sufficiently accurate for

many applications. To satisfy more stringent requirements, the Global Positioning System

(GPS) has been developed. When used with appropriate receivers, it is capable o deriving '3

a moving vehicle's position and velocity to an accuracy o/a ut - 8 meters d 05

meters/second (one sigma) (4).

The availability of the Global Positioning System begs the question of whether it

negates the necessity of modeling the gravity disturbance vector, i.e. -- Whether there is

any need to model the gravity disturbance, since we can cancel its effect by using the

GPS. This paper answers that question by using error propagation techniques to show the

effect of the GPS data in a typical navigation system, both with and without compensa-

tion by gravity disturbance modeling.

In the modern inertial navigation system (Figure 1) the gravity vector ' computed

in a feedback loop contains terms due to the earth's gravitational field and due to the

earth's rotation:

-ie 9ie-

where

g = gravity vector

G = gravitation vector

f.= skew symmetric matrix form of earth's inertially = 0 0 0
, le referenced angular velocity,w. 0 0 e

r = geocentric position vector of vehicle 0 e. 0 1t -e

Now, the gravitation vector G is itself the sum of a reference gravitation vector y

and the gravity disturbance vector 6g:

G =(2)

Typically, the inertial navigation system computes the components of y in terms

of those terms which correspond to the mathematical reference figure used for the earth,
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an ellipsoid. In terms of spherical harmonics, the componets of y are given by:

Yu 2 3J2 (3 cos L-1) -
rr ~r4 2

43 (_ (35 cos L-30cos L+3 

Ye = 0 (3)

2 sin L cos L 2 + 5 J4 R

Yn A-_ G (R) L 9 r
r 2 r

(7 Cos L - 3)

where

GM = gravitational constant times mass of Earth

L = geocentric latitude of vehicle (approximated by geodetic latitude)

R = equatorial radius of earth

32,J4 second and fourth degree zonal harmonic coefficients of geopotential

The earth rotation term, ie 1fie L, is computed along with the reference gravita-

tion vector so that we may consider the gravity vector as

where x = reference gravity vector.

The components of the reference gravity vector are given by

1 2

Y u=Yu 1 ie Cos L

Y e = 0 (5)

*2

Y n = Yn - 1W ie sin L cos L

t% = earth rotation rate

The gravity disturbance vector, 6g, which can be defined via equation (4) as the

difference between the actual gravity vector and the reference gravity vector, has a root

mean square (RMS) value over the United States of 17 Vi g in the gravity anomaly or down

component (5). Extremes in excess of 100 j g occur. While the RMS values are

representative of the gravity disturbance, their actual values are very position dependent,

varying with longitude as well as latitude and height. Further, their correlation distances

are rather short, about 20 km for the east and north components; the position dependence

3
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where

GM = gravitational constant times mass of Earth

j L geocentric latitude of vehicle (approximated by geodetic latitude)

R = equatorial radius of earth

J2 4, = second and fourth degree zonal harmonic coefficients of geopotential

The earth rotation term, n e r is computed along with the reference gravita-

tion vector so that we may consider the gravity vector as

g=y * g (4)

where - = reference gravity vector.

The components of the reference gravity vector are given by
* 2 2

Y u=Yu+N iecos L
= 0 (5)

*5 2

Y n = yn - o ie sin L cos L

LJie = earth rotation rate

The gravity disturbance vector, 6g, which can be defined via equation (4) as the

difference between the actual gravity vector and the reference gravity vector, has a root

mean square (RMS) value over the United States of 17 V g in the gravity anomaly or down

component (5). Extremes in excess of 100 ijg occur. While the RMS values are

representative of the gravity disturbance, their actual values are very position dependent,

varying with longitude as well as latitude and height. Further, their correlation distances

are rather short, about 20 km for the east and north components; the position dependence
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is seen to be rather strong. Thus, it is advisable to incorporate into the gravity

computation feedback loop a computation of the gravity disturbance as a function of

position.

A rigorous romputation of the gravity disturbance components involves a world-

wide integration of gravity anomaly data via the equations (6):

=R fAg8S(r,*) dogu 4w a r

age= R fAg 3S(r, u)d
47rrcos L a (6)

Agn=. Nfg 3 S(r,I,)
4I-ffr a 3L

where

A g = gravity anomaly for surface element dc

S(r,*) = the extended Stokes Function

S(r,*) = 2R+ R - 2R - R cost.

p r r r

L 5+3,nr-Rcos*+p1
L 2r

p=(r 2 +R 2 -2Rrcos*)Y2

* =cos - (sin Lsin L' +cos Lcos L'cos(X'-))

L', V = coordinates of midpoint of surface element to which A g and cb refer.

a = surface area of earth

The computer storage and time needed to calculate A& from these equations make

their real-time use impractical. The alternative to this computation is the development

of modeling techniques in which the gravity disturbance vector can be accurately

represented by some mathematical function which is adaptable to real-time computation

and is conservative of avionics computer resources.

Although several mathematical models may be applicable to the gravity

disturbance modeling problem, two techniques have shown particular promise in investiga-

tions conducted at the Defense Mapping Agency Aerospace Center. The modeling

technique which has withstood the test of time and application is the use of point masses
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(7). A relatively recent technique, still under investigation at DMA Aerospace Center, is

the Finite Element Method in which Chebyshev polynominals are used to model the

gravity disturbances in small volumes (finite elements) (8). See references (9) and (10) for

results of DMA Aerospace Center investigation into goodness of fit of the Finite Element

modeling and the result of gravity disturbance modeling on a selected test flight track.

In the Point Mass Model, the gravity disturbances are given by (7)

N
g =GM Z l a6gu G i~ £ -_mM) 1

u j=1 A)" -" a r

Nge GM Z. - I.rM 1
e J=I M)0 a X (7)

N
gn = G M Z - k 12_.M)j: MP

where

p = distance from jth point mass to exterior point

(m jM) = ratio of jth point mass to Earth's mass

N = number of point masses in set.

In the Finite Element Model, the gravity disturbances are given by (8).
6 N n n-I
gu = z z C Ti(X) TiN2) Tk(N3)n=O i=o j=o uijk

N n n-I
6 g=o 1 jE E C Ti(x1) Tj(x 2 ) Tk(x3 ) (8)ge n=o i=o j=0 e ijk 1 2k3

6 N n n-I
gn z E. E C n T I(x1) T j(x2) T k(X3)n=o i=o j=o nijk
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where

N = highest order of approximating polynomials

k = n-i-j

X = (h-h -)/Ah
x2 = (Xx " V e )/AX)

2 ref

x3 = (L-Lre)/A L

T n(x) = shifted Chebyshev polynomials

Cuijk' Ce ijk' Cnijk = coefficients of the set

hrefl Aref' Lref = = coordinates of lower southwestern point of cell

Ah, AX, A L = dimensions of the cell

In both the Point Mass or Finite Element techniques, the parameters of the fit,

(m /M) or Cuijk C eijk, C nijk, are determined by least square fit to available geopotential

data.

In our previous investigations of the Finite Element Method (9), we selected a 9o x

15 0 x 9 km region (32 0 N - 410 N, 108 0 W - 93°W, 0 - 9 km altitude) in the southwestern

part of the continental United States (Figure 2) to perform test computations. It was

found that third order polynomials would suffice to model the east and north components

of the gravity disturbance vector to an accuracy of + 5 p g in 102 elements in this area.

Of the remaining elements, 29 were adequately modeled with sixth order polynomials

(stippled on Figure 2) while the remaining four required ninth order polynomials (sti ppled

and boxed on Figure 2). Along a simulated flight line which carries an aircraft at Mach

0.5 over a mixture of cells requiring third, sixth and ninth order polynomials, we found

that if third, sixth and ninth order polynomials were used as required, the modeling

accuracy achieved was + 2.4 p g in the east component and +2.7 p g in the north component.

This accuracy will be accepted in this paper as representative of that which can be

achieved by either Point Mass or Finite Element modeling.

6 ~,



III. ERROR PROPAGATIONS AND KALMAN FILTERING

A semi-continuous Kalman Filter process is used in which the error state vector is

propagated by the equation

X= F(t) X + W + U (9)

Where

X = error state vector
ax

F(t) = fundamental matrix, essentaiLy a X

W = vector of error forcing functions

U = vector of correcting functions

Assuming that the vertical channel is damped by a barometric or radar altimeter, the

state vector consists of east and north position errors, east and north velocity errors and

platform orientation errors about the east, north and down axes.

The error covariance matrix is progagated by the equation

P = F(t)P +PF T(t) + Q(t) (10)

where

P = error covariance matrix of system

Q(t) = error covariance of forcing functions minus
correcting functions if any

Note that W is considered to be white noise with zero mean and covariance Q(t).

A discrete Kalman Filter is introduced to incorporate position and velocity

updates, data which will be available at discrete intervals. The error state vector is

updated by the equation

X(+ = G - K(z - HX-)(11)

and the error covariance matrix by the equation
P(+) ( I - K H) P ( - )  (1 2)

where
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Z = a measurement matrix

H = a matrix relating the measurement to the state vector

in the sense Z = HX

K = the Kalman gain matrix

The matrix Z is assumed zero, since the measurement resets the position and velocity

with "zero" error.

The Kalman gain matrix is the keystone of the filtering process in that it provides for

relative weighting between the error covariance of the state vector and the error

covariance of the measurement. It is given by:

K = P(-)-IHP(-)HT - R) -1 (13)

where

R = error covariance matrix of measurement.

Note: In equations (11) through (13), the superscript ( - ) implies "immediately before

update", and the superscript ( +) implies "immediately after update."

A gyro drift rate of 0.0000010 /hour and an accelerometer bias of I 1.gwere

included. In each error propagation, the vector of error forcing functions, W, includes not

only these effects but also the unmodeled gravity disturbance vector Sg, which we have

computed for all points on the simulated flight line by application of equations (6) to

actual gravity data. The error covariance Q of this forcing function is a diagonal matrix
10 2

with the gravity disturbance variances set to 64 x 10- (m/sec/sec) for the unmodeled

gravity disturbances and equal to the modeling accuracy stated above for the modeled

gravity disturbances (11).

Two propagations were accomplished over the flight line depicted on Figure 2 to

establish a baseline reflecting the effect of the gravity disturbances with no updating by

GPS data. One propagation was accomplished with the vector of correcting functions, U,

equal to zero, representing the error state vector which would result if the gravity

disturbances were left unmodeled. The second propagation was accomplished with U set

equal to the value determined by the Finite Element method as a function of position.

Results of these propagations are given in Table 1.

8
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TABLE I

Maximum Error State Vector (no GPS Update)

Component Unmodeled Modeled

E 1059.24m 31.78m

N 1450.59m 62.10m

1.218m/sec 0.038m/sec

N 1.598m/sec 0.069m/sec

Three additional sets of propagations were accomplished in order to assess the

impact of the GPS data on the inertial navigation system, with and without the gravity

disturbance modeling. In these propagations the measurement covariance matrix R is a

diagonal matrix with the pertinent elements set equal to the accuracies cited earlier in

this paper for the GPS. A measurement is assumed available at each time increment

along the flight line. The inertial navigator may use the position data, the velocity data,

or both for updating. Table I1 gives the results for the case where both are used.

TABLE II

Maximum Error State Vector (Position and Velocity Data)

Component Unmodeled Modeled

E 73.97m 8.08m

N 42.43m 8.44m

0.233m/sec 0.017m/sec

S0. 162m/sec 0.019m/sec

The application of the GPS data has improved the unmodeled case by better than an order

of magnitude in position and nearly as well in velocity. However, the improvement is not

9



as great as that afforded by gravity disturbance modeling without the GPS data (see Table

1). When the inertial navigator is furnished with both GPS data and gravity disturbance

modeling, the results are quite dramatic.

Tables III abd IV give the results for the cases where position data only and

velocity data only, respectively, are used.

TABLE IIl

Maximum Error State Vector (Position Data Only)

Component Unmodeled Modeled

E 82.32m 8.46m

N 47.90m 8. 89m

E 0.255m/sec 0.017m/sec

N 0. 177m/sec 0. 019m/sec

TABLE IV

Maximum Error State Vector (Velocity Data Only)

Component Unmodeled Modeled

E 248 .28m 21.88m

N 220.92m 20.58m

F 0.284m/sec 0.025m/sec

N 0.236m/sec 0.026m/sec

The use of position information alone to update the inertial navigator yields error state

vectors nearly the same as those using both position and velocity data. The velocity

information does not contribute as significantly to the updating process; however, velocity

data provides a substantial improvement in the case where gravity disturbances remain

unmodeled.

Figures 3 through 6 graphically portray the variations of the error as a quasi-

time-dependent accelerometer bias. On these graphics, which are computer drawn, the

fainter lines are the position and velocity errors due to the unmodeled gravity disturbance

10



vector, while the heavier lines are the position and velocity errors after compensation for

the gravity disturbances has been applied.

Because the updating occurs in a semi-continuous mode, i.e., at each time

increment along the flight line, we do not see glitches or a saw-tooth effect in the

graphics. Instead, the graphics approximate sine waves with a frequency equal to the

Schuler frequency (period = 84 minutes). Higher frequency variations, especially apparent

in the velocity graphic, reflect the effect of the short wavelength components of the

gravity field.

IV. CONCLUSIONS

Although the GPS provides the most accurate and effective means of providing

updated position and velocity data to an inertial navigation system, the error state vector

may grow to greater limits than that tolerable in certain applications. Using optimum

gravity disturbance modeling techniques, without further updating by the GPS, the

maximum error state vector can be made comparable with that obtainable by the GPS. It

is seen then as an alternative should GPS be denied to the inertial navigator. The fullest

capabilities of both are realized when the inertial navigator has both gravity disturbance

modeling and position and velocity updating from the GPS. If, in~ the interest of

conserving computer resources, it is desirable to use only position data in the updates,

there is only a minor degradation in performance of the system. Use of only velocity data

in the updates offers an improvement over no modeling at all.
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